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Preamble 

          In 1970, Claude Berge published the original French version his 

fundamental and perhaps most important book, Graphes et Hypergraphes.  

          To many graph theorists, its chapters were saplings ready to be 

cultivated into the vast forest that we know today.   

 
As we enter this 50th (Jubilee) anniversary year, 

 we celebrate Le Bois de Berge with its mathematical 

  palms, pines and poplars,  

   firs, fruit and ficuses,  

    oaks, maples and cacti.  



One of those sapling chapters was on Perfect Graphs. 

 Berge challenged us with his Perfect Graph Conjecture, and                        

  surveyed its core subclasses:                

comparability graphs, interval graphs, and triangulated (chordal) graphs. 

—citing Fulkerson, Gallai, Ghouila-Houri, Gilmore, Hoffman, Hojós, Lovász.   

 

 

          By the time the English version appeared in 1973,                           

more sprouts could have been added to the blossoming family 

      —Benzer, Dirac, Fishburn, Gavril, Roberts, Rose, Trotter.  

However, these and others would wait until 1980, when my own book 

 Algorithmic Graph Theory and Perfect Graphs  first appeared. 

 —a direct outgrowth of Berge’s inspiring chapter. 

 

 



Triangulated graphs – also known as 

rigid circuit graphs (Dirac), acyclic graphs (Lekkerkerker and Boland) 

But it was Fanica Gavril who coined the term  chordal graphs. 



Fanica Gavril: “I knew that these graphs occurred before as triangulated graphs, but the  

    term triangulated was also used for maximal planar graphs, implying the  

    statement, ‘some planar triangulated graphs are not triangulated graphs’  

    (like the complete wheels). So, I decided to call them chordal graphs  

    since every simple cycle with more than three vertices has a chord.” 

   —personal communication with the author. 

NOT a chordal graph 
 It has many copies of C4 

    This IS a 
chordal graph 

A graph G is a chordal graph, if  

 every cycle in G of length greater than or equal to 4 has a chord,  

that is, an edge connecting two vertices that are not consecutive on the cycle. 



The Wonderful World of Chordal Graphs 

Chordal graphs—the second most interesting and important family of graphs 

 after trees and before planar graphs.  

Their fame is due to their  

• beautiful and classical characterizations,  

• diverse mathematical properties, and 

• numerous applications:  

combinatorial optimization, constraint programming, relational databases, 

perfect phylogeny, Bayesian networks for probabilistic reasoning, exploiting 

sparsity in large positive semidefinite matrices and recently, register allocation.  



Chordal graphs -- one of the earliest families whose structural properties 

 fundamentally help in solving hard problems efficiently, including the  

  coloring, clique, stable set, and clique cover problems.  
 

Chordal graphs -- lead to researchers looking carefully at the tree structure  

of graphs and hypergraphs, and developing the notion of treewidth and  

partial k-trees, which have many algorithmic consequences.  

 

Lexicographic breadth first search (LexBFS) and maximum cardinality search 

(MCS) have their origins in recognizing chordal graphs.  

 

A large hierarchy of graph classes have been built around chordal graphs, 

each with its own characterizing properties and applications. 



Early Results (1960s) 
Vertex Separator Theorem (Dirac) 
Perfect Elimination (Fulkerson & Gross) 

Definition:  A subset of vertices  S  is a minimal vertex separator of G 

if there exist nonadjacent a, b  V(G) such that a and b are not connected 

in G − S, and  S  is minimal for inclusion with this property. 
 

We call  S  a minimal {a,b}-separator. 



Example of Minimal Vertex Separators 

Note:  A minimal vertex separator MAY CONTAIN  
 another minimal vertex separator.  



Example of Minimal Vertex Separators 

Note:  A minimal vertex separator MAY CONTAIN  
 another minimal vertex separator.  



Dirac [1961] 

Theorem 1: A graph is chordal  iff   

 every minimal vertex separator is a complete graph. 

Theorem 2: Every chordal graph has two non-adjacent simplicial 

vertices -- unless it is complete, where every vertex is simplicial. 

Definition: A vertex  v  is simplicial if its neighborhood is complete. 

Fulkerson & Gross  [1965] 

Theorem 3: A graph is chordal  iff   

 it has a perfect elimination ordering (PEO):  [v1, v2, … , vn ] 

where  vi  is simplicial in the induced subgraph Gi = G[vi , …, vn]. 

  Moreover, every simplicial vertex of a chordal graph G  

 can be the first vertex of a perfect elimination ordering. 



Example: Finding a PEO – Recognizing Chordal Graphs 
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Important Remark:  A chordal graph has at most  n  maximal cliques. 

Proof:  Take a perfect elimination ordering (PEO):  [v1, v2, … , vn ]. 

 For each vi  , its forward neighborhood 

   Ci = N[vi]   {vi , …, vn } is a clique. 

For any maximal clique  C  of  G,   

     let  vj  be the first vertex of  C  in the PEO. 

 Then C =  Cj  , so there are at most  n  maximal cliques of G.  

  



Algorithmic and Structural Aspects (1970s) 

A naïve implementation to find a PEO and recognizing chordal graphs 

can be done in O(n4).    This can easily be improved to O(n3) .   However, 

Theorem 4: Rose, Tarjan and Lueker [1976]  

 LexBFS (Lexicographic Breadth-first Search) or  

 MCS (Maximum Cardinality Search)  

will find a PEO of a chordal graph in O(n + m) time. 

   Moreover, applied to any graph, the ordering produced  

   can be tested as a PEO in O(n + m) time, 

  thus also recognizing chordal graphs. 

   Corollary: Given a PEO, MINCOLOR, MAXCLIQUE, MAXSTABLE  and several 

other optimizations can be done in O(n + m) time on chordal graphs. 

 Computational Complexity 



LexBFS Algorithm: 
   

    Input:  Graph G = (V, E) and a distinguished (starting) vertex x of G 

   Output:  An ordering  σ  of the vertices of G 
 

for each vertex  y  in V \ {x}  do  label(y) ← null; 

for i ← |V | downto  1  do 

   -   pick an unnumbered vertex  y  with lexicographically largest label; 

   -   σ-1(y) ← |V | + 1 - i ;  {assign next number to y} ; 

   -   for each unnumbered vertex  z  in N(y) do append  i  to label(z). 

Breadth First Search giving a Lexicographic-priority  
for choosing the next vertex to explore 



LexBFS Algorithm: Breadth First Search giving a Lexicographic-priority  
for choosing the next vertex to explore 

Theorem. If G is chordal, then  σ  the reverse of any LexBFS ordering  

  is a perfect elimination ordering.  

An alternate view of LexBFS: 

 

BFS uses a ‘stack’  

LexBFS uses ‘partition refinement’ on that stack 

    to obtain a linear-time implementation. 

 



Algorithmic and Structural Aspects (1970s) 
 Subtrees of a Tree  

Theorem 5:   Buneman [1974], Gavril [1974], Walters [1972, 1978]  

A graph G is chordal iff it is the intersection graph of subtrees of a tree T. 

Moreover, the tree  T  can be chosen such that each node of  T  

corresponds to a maximal clique of G,  

   such that the subtree Tv associated with vertex v  V(G)  

   is induced precisely by those maximal cliques in G that contain v.  

 T  is then called a clique tree representation of G. 

Important Remark:  A clique tree for a chordal graph has at most  n  nodes. 

v  V(G)    Tv   such that    uw  E(G)  Tu  Tw    
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Clique Tree Representation of a Chordal Graph 



How to construct a clique tree 
   Use your favorite maximum-weight spanning tree algorithm 

 

For a chordal graph G, the weighted clique intersection graph WC (G) 

 vertex set:   The set of maximal cliques of G  

  edge set:     Two distinct cliques K and K’ are connected by  

   an edge if and only if their intersection is nonempty 

 edge weights:  w(K, K’) = | K  K’ |  

Theorem 6: Bernstein and Goodman [1981], Gavril [1987], Shibata [1988] 

Every maximum-weight spanning tree of WC (G) is a clique tree of G.  
 

Thus, your favorite efficient algorithm for MST such as Prim or Kruskal 

can be used (negating the edge weights) to find a clique tree, given the set of 

maximal cliques of a chordal graph (easy to find from a PEO). 



Chordal graphs could easily fill an entire book!  

— theory, applications and algorithmic aspects 

 

Golumbic [1980] had a 22 page chapter,                                  
 Triangulated graphs   

Blair and Peyton [1993] published a 29 page survey,                                                      
 An introduction to chordal graphs and clique trees 

Vandenberghe and Andersen [2015] published a 92 page survey, 
 Chordal graphs and semidefinite optimization 

 

Many books today have large sections devoted to  

chordal graphs and their offspring. 



Applications  

• Solving (sparse) semidefinite matrix problems 

• Acyclic Database Schemes 

When the zero/non-zero pattern of a (sparse) matrix M is 

the adjacency matrix of a chordal graph G, then a PEO 

for G can be used for efficiently solving many problems  

 – like Gaussian elimination preserving sparsity. 

When a Relational Database Scheme R can be designed so its 

tables form an acyclic hypergraph H, (the hypergraph analogue 

of chordal graphs), then queries can be solved very efficiently. 



More Applications  
• Register allocation in compilers  

SSA-form programs (Static Single Assignment)  
are an intermediate representation in a compiler,  
which requires that each variable is assigned  
exactly once – usually by renaming. 

“live area” of a variable: 
     a variable is defined 
 then used … 
 until its value “dies” 

Since the 1980’s, all register 

allocation is done by coloring 

the interference graphs of 

live areas. 

https://en.wikipedia.org/wiki/Intermediate_representation


Sabastian Hack: 

The interference graph of every SSA program is chordal,  

 independent of its control flow structure.  

 

Essentially, the fact that in SSA, every variable dominates all its uses and  

the fact that dominance is a tree-like partial order (all dominators of a node 

are linearly ordered) yields a perfect elimination order. 

 

Therefore, they can be optimally colored efficiently. 

But, the real problem of register allocation is not just finding a coloring,  

 but first doing live-range splitting to lower the register pressure –  

maximal number of simultaneously live variables = size of a maxclique. 

 SSA insures that the chromatic number = size of a maxclique, 

  since the graph is chordal. 



Many Newer Papers on Chordal Graphs 

(2013) 

(2013) 



Cliques and Chordal Graphs 

Maximal cliques play a central role  

 in the study of chordal graphs. 

• A chordal graph has a clique tree representation 

• All minimal vertex separators are cliques 

• The (weighted) clique intersection graph provides much information 

• The reduced clique graph -- Habib and Stacho, European J. of Combin. 33 (2012) 712–735        

 To characterize the astroidal sets in chordal graphs, and 

 To study chordal graphs that admit a tree representation with a small number of 

leaves, i.e., small leafage, a notion introduced by Lin, McKee and West [1998] 

 Determining the leafage of a chordal graph is Polynomial-time -- Habib and Stacho [2009] 



The reduced clique graph  

Two maximal cliques Q and Q′ of G form a separating pair  

if Q ∩ Q′ is non-empty and every path in G from a vertex  

of Q \ Q′ to a vertex of Q′ \ Q contains a vertex of Q ∩ Q′ . 

 

Theorem [Habib and Stacho, 2012] A set  S  is a minimal vertex separator of a chordal 

graph G if and only if there exist maximal cliques Q and Q′ of G forming a separating 

pair such that S = Q ∩ Q′ .    

      

Definition:  The reduced clique graph RC(G) of G is the graph whose vertices are 

maximal cliques of G with edges {Q, Q′} between separating pairs Q and Q′ . 
 

Theorem [Habib and Stacho, 2012] Let G be a connected chordal graph.  

 The reduced clique graph RC(G) is the union of all clique-trees of G. 

Q′ 
Q 

S 

This extends Dirac’s result. 



Generating random chordal graphs 

Motivation:  The need for testing and comparing various optimization algorithms  

 on chordal graphs  ̶  including exact / heuristic / parameterized  algorithms  

Linear time algorithm:   Ekim, Shalom and Şeker [2016] 

Remark: Generating chordal graphs uniformly at random is subject to further research. 

Technique:    Build a ‘contraction minimal’ clique tree  T  by adding a leaf  l  

 adjacent to some existing node u chosen uniformly at random at each iteration: 

Goal:   Fair distribution of maximal cliques 

 a) a non-empty set S of new subtrees consisting of only l  is added to T ,  

 b) a random proper subset of the subtrees containing  u  is chosen and extended  

  by adding the node  l  and the edge ul,  
 c) the graph G is extended to reflect the changes in T (set S are simplicial true twins).  



Ekim, Shalom and Şeker [2016]:  Experimental results provide 

 insight into the distribution of chordal graphs generated, 

specifically, comparing the maximal clique sizes of two other methods from the literature. 

Histograms of  

maximal clique sizes  

for n = 5000 and average edge  

densities 0.01, 0.1, 0.5, and 0.8  

(from left to right). 



Another companion paper on the generation of random chordal graphs: 

 Seker, Heggernes, Ekim and Taskın [2017]   {full version on Arxiv} 



A Chordal Graph 
Hierarchy 

Chordal graphs 

Restricted Unimodular chordal 
= { gem, crown, jewel }-free chordal 

Strongly chordal 
= sun-free chordal 

Block Duplicate (Strictly chordal)  
= { gem, arrow }-free chordal 

Block graphs 
= diamond-free chordal 

Weakly chordal Chordal Probe 

Distance Hereditary chordal (Ptolemaic)  
= gem-free chordal 

UNNAMED chordal 
= { gem, crown }-free chordal 

Reduced Block Duplicate 
= { gem, arrow, jewel }-free chordal 

Laminar chordal 
= { gem, double-diamond}-free chordal 



Chordal Probe Graphs – a superclass of chordal graphs 

A graph G is chordal probe if its vertices can be partitioned into 

 two sets P (probes) and N (non-probes), where N is a stable set,  

  such that G can be extended to a chordal graph  

   by adding edges only between non-probes.  
For example, 

 Every bipartite graph is chordal probe—a chordal completion: 

Use the same bipartite partition V(G) = X  Y into two stable sets,  

calling  X  probes and Y  non-probes, and fill in edges to make  Y  into a clique.  

 This completion is a split graph and thus a chordal graph.  

 

Remark:  The path P6 is not a chordal probe graph. 

Dealing with Partial Information -- missing data and deducing consistency 
 



The Probe Game 

• Take a chordal graph G. 

• Choose a subset of vertices N. 

• Erase the edges in N  N. 

• Give this graph to your daughter. 

Chordal Probe Graphs – another view 

Remark: The set  N  is now a stable set.   All other original edges are “mandatory”.  

HER CHALLENGE: 

Can she fill in some edges in N  N  

to find a chordal graph?  
We assume your daughter is very clever! 

She might even find a chordal graph different from G.  

Theorem:  The Chordal Probe Graph Recognition Problem is polynomial solvable. 

Remark: The Chordal Sandwich Graph Game/Problem is NP-complete, 

       – erasing edges, declaring these as “optional”, then finding a chordal fill-in.   



Case 1:  Given a fixed partition  
  of the vertices into probes and non-probes. 

Quasi-perfect elimination -- recognizing partitioned chordal probe graphs 

 

Definition: A vertex  v  of G is quasi-simplicial if every non-edge of  

 N (v)  has both endpoints which are non-probes 

Theorem: Let G = (P+N,E) be a chordal probe graph, and  

 let  v  be a quasi-simplicial vertex of G.  

If G’ is the graph obtained by making v simplicial and removing it,  

 then G is also chordal probe. 

Observation: This allows us to define a quasi-PEO to recognize chordal probe 

     graphs, in the same spirit as Fulkerson and Gross for chordal. 

(Could potentially be filled-in.) 



SIAM J. Discrete Math. [2006] 

A chordal probe graph  

– Probes are BLACK 

– non-Probes are WHITE 

Vertex  a  is quasi-simplicial and d is not.  

 However, if a is chosen first in a quasi-peo,  

 saturating N (a) and removing a will make  d  quasi-simplicial (actually simplicial) 

  

     σ = ( a, d, c, b, j, h, l, f, e, k, g, i) is a quasi-peo. 



Partitioned chordal probe graphs – additional results 

• Another recognition method in BGL[2006] is based on LB-substars 
and LB-simplicial vertices with complexity O(|P||E|) time. 

• Similar results for the more general case where  N  is not required to 
be a stable set. 



Case 2:  No partition is given as part of the input. 

Definition: A graph G = (V, E) is cycle-bicolorable if each vertex can be  

labeled with one of two colors in such a fashion that the colors alternate  

in every chordless cycle. 

Golumbic and Lipshteyn [2004]:   In a chordal probe graph  G = (P + N , E),  

    the probes and non-probes alternate in every chordless cycle of  G. 
 

Berry, Golumbic and Lipshteyn [2006] use this property to introduce a new graph class. 

Our results:  

• Cycle-bicolorable graphs are perfect graphs. 

• Both cycle-bicolorable graphs and their subfamily chordal probe graphs 

can be recognized in O(|E|2) time. 



A Chordal Graph 
Hierarchy 
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Weakly Chordal Graphs – a superclass of chordal graphs 

 Introduced by Ryan Hayward [1985]  

 

Definition:  A graph is weakly chordal if it has no induced subgraph  

  isomorphic to  Ck  or  Ck  for k  5.  

Remark:  A chordal graph is weakly chordal,  

 since C5 = C5 , and Ck (for k  6) contains induced copies of  C4 . 
 

 Trapeziod graphs and tolerance graphs are non-chordal subfamilies  

 of weakly chordal graphs, (see Golumbic and Trenk [2004]). 
 

Definition:  A two-pair in a graph is a pair of (non-adjacent) vertices  

x and y such that every shortest path between them has exactly two edges. 

 



Weakly Chordal Graphs – characterizations 

Theorem: The following are equivalent. 

 (i)   G is a weakly chordal graph. 

 (ii)  Every induced subgraph of G is either a clique or has a two-pair. 

  Hayward, Hoàng and Maffray [1990]  

 (iii) If edges are repeatedly added between two-pairs in G,                       

        the result is eventually a clique.   Spinrad and Sritharan [1995]  

This leads to an O(n4) recognition algorithm for weakly chordal graphs. 

 

Berry, Bordat and Heggernes [2000] established a strong structural 

relationship between chordal graphs and weakly chordal graphs, leading 

them to an another O(n4) recognition algorithm based minimal separators 

and LB-simplicial edges. 



Example: an Analogy between Chordal & Weakly Chordal 

EPT graphs:  Edge intersection graphs of Paths in a Tree 
 

 They can have chordless cycles of all sizes, BUT ---  

Theorem:  The following are equivalent, 

chordal  EPT   

  EPT on deg3 host trees 
 

[Golumbic-Jamison, 1985] 
 

Theorem: The following are equivalent, 

weakly chordal  EPT   

  EPT on deg4 host trees 
 

[Golumbic-Lipshteyn-Stern, 2005] 

Finally, the so called  Chordal-Bipartite graphs 
are actually the class weakly chordal  bipartite  



What is between Chordal  

and Weakly Chordal Graphs? 

Elad Cohen, Martin Charles Golumbic,  

Marina Lipshteyn and Michal Stern [2008] 

[h, s, 2] graphs: 

Edge intersection graphs of  

 subtrees of degree  s 

 in a host tree of degree h 
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Ptolemaic Graphs  aka  Distance Hereditary Chordal Graphs 

A graph is ptolemaic if any four vertices u, v, w, x satisfy the ptolemaic inequality:  

d(u,v) d(w,x)  d(u,w) d(v,x) + d(u,x) d(v,w)  
 

Characterizations:  Ptolemaic graphs are equivalent to  

1. chordal and gem-free    -no 

2. chordal and distance hereditary i.e., if the distance function in every induced 

subgraph of G is the same as in G itself.  

3. chordal and the reduced clique graph RC(G) and                                                              

  the clique-intersection graph C(G) are the same.  

4. chordal and every pair of distinct non-disjoint maximal cliques 

  Q and Q′ of G forms a separating pair. 

5. chordal and the minimal vertex separators contained 

  in each maximal clique is a laminar family. 

 

d(u,v) d(w,x)  

d(u,w) d(v,x)  

d(u,x) d(v,w) 

+ 

 

Definition. A laminar family of sets:  any two of the sets are  

 either disjoint  or  one of them is a subset of the other. 



Subclasses of Ptolemaic Graphs 

AC graphs: The clique-intersection graph C(G) of a graph G is acyclic  
 

Theorem: A chordal graph is AC  if and only if  

 every vertex in G belongs to at most two maximal cliques. 

 

Laminar chordal graphs: The set  S  of all minimal vertex separators is laminar. 
 

Theorem:  A chordal graph is laminar chordal if and only if  

 G is {gem, double diamond}-free.  no 

         

Lilian Markenzon and Christina Fraga Esteves Maciel Waga,  

 New results on ptolemaic graphs, DAM 2015 
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The blocks of a graph are its maximal 2-connected subgraphs.  

The cut-vertices are the vertices belonging to more than one block. 

 

A block graph H is defined and characterized by 

 the following equivalent conditions:  

    (1)  H is the intersection graph of the blocks of a graph G. 

   (2)  Every block of H is a clique. 

    (3)  H is chordal and diamond-free. 

G 

By Zyqqh at English Wikipedia 

H 

Block Graphs 



Block Duplicate Graphs  aka  Strictly Chordal Graphs 

A block duplicate graph is a graph obtained by adding  

 zero or more true twins to each vertex of a block graph G.     

  Introduced by Golumbic and Peled (Discrete Appl. Math., 2002)  

Characterization 1:  Equivalent to the {gem, dart}-free graphs. 
 

 Independently, William Kennedy (Masters Thesis, Univ. Alberta, 2005) defined  

 strictly chordal graphs from hypergraph properties, proving they too are the 

 {gem,dart}-free graphs. 

  

Characterization 2: Let G = (V, E) be a chordal graph and  S  be the set of minimal vertex 

separators of G.   G is a block duplicate graph iff  for any distinct S, S′ ∈ S,  S ∩ S′ = ∅. 

-- Markenzon and Waga (Discrete Appl. Math., 2015) 



Strongly Chordal Graphs 

Include: Interval graphs, Leaf power graphs, Ptolemaic graphs, Block duplicate graphs,   

They are the Dark Side of chordal graphs 

i.e., the sun-free chordal graphs 

 
More on that next year. 
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